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Abstract

Understanding the effects of thermoelastic coupling on the natural frequency of micro- and nanoscale resonators is

essential for the design of frequency-sensitive microelectromechanical systems (MEMS). This paper presents an exact two-

dimensional analysis of frequency shifts due to thermoelastic coupling in a beam undergoing flexural vibrations. The

coupled heat conduction equation is solved for the thermoelastic temperature field by considering two-dimensional (2-D)

heat conduction along the length and thickness of the beam. Thermoelastic coupling is modeled into the equation of

motion for flexural vibrations through a temperature-dependent first moment of temperature distribution. The Galerkin

technique is used to calculate the thermoelastically shifted frequencies. Detailed calculations are reported for the

thermoelastic frequency shift in representative single crystal silicon and aluminum resonators over a full range of

parameters. The effects of beam aspect ratio, structural boundary conditions, and mode number on the frequency shifts are

discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Flexural-mode micromechanical and nanomechanical beam resonators are critical components of
microelectromechanical systems (MEMS) used in sensing, communications, and energy harvesting. During
vibration, different regions of the resonator are forced periodically into tension and compression. Due to
thermoelastic coupling, these oscillating stress fields generate a time-dependent temperature field within the
resonator. The coupling of elastic and thermal energy domains has two consequences: an attenuation of the
amplitude of vibration due to energy dissipation, and a shift of the isothermal natural frequency. A detailed
analysis of both aspects is required for the design of high performance micro- and nanoresonators.

Energy dissipation due to thermoelastic coupling manifests itself as thermoelastic damping (TED), which is
defined as

Q�1TED ¼
1

2p
DW

Wmax
, (1)
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where Q�1TED is a dimensionless measure of TED, DW is the energy dissipated due to heat conduction across
thermoelastic temperature gradients per cycle of vibration, and Wmax is the maximum stored elastic energy in
the vibrating structure. The effects of thermoelastic coupling on structural dynamics have been studied for
over 80 years, starting with the pioneering work of Nadai in 1925 [1]. In 1937, Zener established the first
theory for TED in the form of an approximate one-dimensional (1-D) analysis [2]. For a beam of thickness h

vibrating at the natural frequency on in the nth flexural mode, this model predicts that [2]

Q�1TED ¼
Ea2T0

C

ont

1þ ðontÞ
2
¼ cZ

ont

1þ ðontÞ
2
; t ¼

h2C

p2k
; (2)

here cZ is the Zener modulus, E is theYoung’s modulus, a is the linear coefficient of thermal expansion, T0 is
the equilibrium temperature of the beam, C is the specific heat per unit volume, and k is the thermal
conductivity. Over the past two decades, Zener’s analysis has been improved and extended in multiple
directions ranging from scaling analyses [3] and single degree-of-freedom models [4] to exact theories to
compute the magnitude of TED in beams [5–7], plates [8,9], rings [10], layered composite structures [11–13]
and electrostatically actuated microresonators [14]. For structures with more complex geometries, numerical
techniques based on the method of finite elements (FE) have been developed to compute TED [15–17].

In stark contrast, the effects of thermoelastic coupling on frequency shifts have received much less attention.
The fractional shift in the natural frequency of a flexural resonator due to thermoelastic coupling is defined as [5]

Do ¼
on � onjisothermal

onjisothermal

; (3)

here onjisothermal is the isothermal value (i.e., in the absence of any thermoelastic coupling) of the natural frequency
of the nth flexural mode. In 2000, Lifshitz and Roukes [5] derived a closed-form expression for the fractional
frequency shift using an exact 1-D theory such that

Do ¼
cZ

2
1�

6

x3n

sinh xn � sin xn

cosh xn þ cos xn

 !
; xn ¼ h

ffiffiffiffiffiffiffiffiffiffi
onC

2k

r
. (4)

Eq. (4) predicts that Do;max ¼ 0:5cZ, which implies a maximal fractional frequency shift of 10�4 for single-crystal
silicon resonators at room temperature (300K). The analysis of Lifshitz and Roukes [5] considers heat conduction
across the thickness of a vibrating Euler–Bernoulli beam. Hence, Eq. (4) does not account for the effects of
length-to-thickness aspect ratio, structural boundary conditions, and mode of vibration on the frequency shift,
because the analysis ignores any heat conduction along the axis of the beam. More recently, two groups—Guo
and Rogerson [18], and Sun et al. [19]—presented two-dimensional (2-D) analyses of frequency shifts that
considered heat conduction along the beam thickness and beam span. Both these models are approximate in the
sense that they assume cubic [18] and sinusoidal [19] temperature gradients across the thickness of the beam prior
to the solution of the thermoelastically-coupled equation of motion for flexural vibrations. For certain aspect
ratios and boundary conditions, the 2-D models predict values as high as 10�3 for the fractional frequency shift in
single-crystal silicon beams, thereby exceeding the predictions of the exact 1-D model by an order of magnitude.
In 2007, Lepage and Golinval [20] presented a 2-D FE model for thermoelastic coupling and calculated the
frequency shifts in a small set of doubly-clamped single-crystal silicon microresonators. Intriguingly, the results of
the 2-D FE model were in good agreement with the exact 1-D results of Lifshitz and Roukes [5], which implies
that the 2-D numerical results differ significantly from the predictions of the approximate 2-D theories.

The goal of this paper is to resolve these differences by developing an exact 2-D theory of frequency shifts
due to thermoelastic coupling in micro- and nanomechanical resonators. The derivation of the thermoelastic
equation of motion, and a framework for obtaining the solution of the thermoelastic boundary-value problem
using the Galerkin method, are presented in Sections 2 and 3, respectively. In Section 4, this framework is used
to compute the frequency dependence of Do for representative single-crystal silicon and aluminum resonators
over a full range of parameters that include beam aspect ratios, structural boundary conditions, and mode
numbers. The implications of these results for the accuracy of various 1-D and 2-D theories are discussed
in Section 5.
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2. Equation of motion for vibrations of a thermoelastic beam

Consider a slender, isotropic and homogeneous beam of length L, thickness h, and width b. A Cartesian
coordinate system is attached to the beam such that the x-coordinate is parallel to the beam axis. The
thickness and width directions are parallel to the y- and z-axes, respectively, and the structure occupies the
domain defined by: 0pxpL; 0pyph; 0pzpb. The beam undergoes bending vibrations of small amplitude
about the x-axis, such that the deformation is consistent with the linear Euler–Bernoulli theory. The transverse
displacement for vibration in the nth flexural mode with natural frequency on is

Y ðx; tÞ ¼ Y 0ðxÞ expðiontÞ. (5)

In the absence of thermoelastic coupling, the isothermal uncoupled resonance frequency is given by

onjisothermal ¼

ffiffiffiffiffiffiffi
EI

rA

s
k2n, (6)

where the constant kn is a function of the structural boundary conditions [21]. The goal of this analysis is to
calculate the frequency shift from onjisothermal to on due to thermoelastic coupling.

The elastic stress field in the beam is assumed to be uniaxial; only sxx can attain non-zero values. This
assumption is valid for slender Euler–Bernoulli beams and neglects any shear stresses in the vicinity of
clamped boundaries [22]. The time-harmonic uniaxial stress generates an oscillating temperature field due to
thermoelastic coupling. The temperature field may be represented as the difference between the temperature of
the beam, T, and the equilibrium temperature, T0, as

yðx; y; tÞ ¼ Tðx; y; tÞ � T0 ¼ y0ðx; yÞ expðiontÞ. (7)

The amplitude y0 is, in general, a complex-valued quantity indicating that the temperature field is not in phase
with the applied stress.

The equation of motion for this vibrating beam is obtained by combining geometric relationships with
thermoelastic constitutive laws. From the generalized Hooke’s law of linear thermoelasticity, the strain field in
the beam is [23]

�xx ¼
sxx

E
þ ay; �yy ¼ �zz ¼ ay. (8)

All other strain components are identically zero.
The relation between strain and displacement is based purely on geometrical arguments and is the same for

both thermoelasticity and isothermal elasticity [23]. Therefore, the strain-curvature relationship for an
Euler–Bernoulli beam in flexure is

�xx ¼ �ðy� h=2Þ
q2Y

qx2
. (9)

Eqs. (8) and (9) can be combined to yield

sxx ¼ �Eðy� h=2Þ
q2Y
qx2
� Eay. (10)

From Newton’s second law, the equation of motion for free flexural vibrations of the beam is

q2Mz

qx2
þ rA

q2Y

qt2
¼ 0, (11)

where A is the cross-sectional area of the beam and r its density. The internal moment, Mz, is given by

Mz ¼ �

Z b

0

Z h

0

ðy� h=2Þsxx dydz ¼ EI
q2Y

qx2
þ EITa, (12)
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where the mechanical moment of inertia, I, and the first moment of temperature distribution, IT, are defined as

I ¼
bh3

12
, (13a)

IT ¼ b

Z h

0

ðy� h=2Þydy. (13b)

Finally, the coupled equation of motion is obtained by substituting Eq. (12) in Eq. (11) to give

EI
q4Y
qx4
þ Ea

q2IT

qx2
þ rA

q2Y

qt2
¼ 0. (14)

At this stage, we proceed by first solving a thermal boundary-value problem to obtain expressions for the time-
harmonic temperature field, y, and the first moment of temperature distribution, IT. With this, the equation of
motion, Eq. (14), can be solved subject to the appropriate structural boundary conditions to determine the
natural frequency, on, for thermoelastically-coupled vibrations in the nth mode. The next section describes the
detailed implementation of this approach within the context of a 2-D theory of classical thermoelasticity.

3. 2-D analysis of thermoelastic coupling

3.1. Analysis of the thermal field

The analysis presented in this section closely follows the framework developed recently to establish a 2-D theory
of TED [7]. The starting point is the coupled equation for heat conduction within the vibrating beam [23,24]

C
qy
qt
¼ kr2y� EaT0

q�xx

qt
. (15)

Eq. (15) ignores the contributions from the transverse strains eyy and ezz. We have demonstrated that the errors
caused by this omission are negligible [7].

The 2-D analysis considers heat conduction due to temperature gradients along the span (x-) and across the
thickness (y-) of the beam. Hence, Eq. (15) reduces to

C
qy
qt
¼ k

q2y
qx2
þ

q2y
qy2

� �
� EaT0

q�xx

qt
. (16)

Eq. (16) can be solved using the method of Green’s functions subject to the appropriate thermal boundary
conditions [25]. These thermal conditions must be defined at the extremities of the beam axis (x ¼ 0,L), and at
the lateral bounding surfaces of the beam (y ¼ 0,h). For the structures considered in this paper, these surfaces
are either free (surrounded by a gas at low pressure) or clamped to a substrate. The substrate is much larger
than the beam, and the clamped surface is modeled as being in perfect thermal contact with the substrate.
Therefore, a clamped end of the beam corresponds to an isothermal boundary condition. For free surfaces,
radiation is the only mechanism of heat transfer, and the rate of radiative heat transfer scales as the difference
between the fourth powers of the absolute temperatures of the beam and the surroundings [25]. For micro-
and nanomechanical resonators operating at room temperature (300K), the maximum change in temperature
due to thermoelastic coupling is �0.1K [7]. Therefore, radiation from free surfaces is negligible, and these
surfaces correspond to an adiabatic thermal boundary condition [5–14].

Thus, the thickness coordinate thermal boundary conditions for the doubly-clamped beam as well as the
cantilever are adiabatic,

qy
qy

����
y¼0;h

¼ 0. (17)

The span coordinate thermal boundary conditions for a doubly-clamped beam are isothermal,

yjx¼0;L ¼ 0. (18)
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For the cantilever, the fixed end (x ¼ 0) is in perfect thermal contact with the substrate and hence isothermal.
Therefore,

yjx¼0 ¼ 0. (19a)

The free end (x ¼ L) of the cantilever is adiabatic, and therefore

qy
qx

����
x¼L

¼ 0. (19b)

Based on these boundary conditions, the temperature change due to thermoelastic coupling is calculated as the
complex-valued quantity

y2Dðx; y;on; tÞ ¼ ðy
R
2Dðx; y;onÞ þ iyI

2Dðx; y;onÞÞ expðiontÞ. (20a)

The real and imaginary parts of the temperature field are given by

yR
2D ¼

4EaT0

C

1

Lh

X1
m¼1

X1
p¼1

o2
n

o2
nþ

k2

C2ðb
2
mþg2pÞ

2
wmZp sinðbmxÞ cosðgpyÞ,

yI
2D ¼

4EaT0

C

1

Lh

X1
m¼1

X1
p¼1

on
k
C
ðb2mþg

2
pÞ

o2
nþ

k2

C2ðb
2
mþg2pÞ

2
wmZp sinðbmxÞ cosðgpyÞ, (20b)

where

wm ¼

Z L

x0¼0

sinðbmx0Þ
q2Y

qx02
dx0,

Zp ¼

Z h

y0¼0

cosðgpy0Þðy0 � h=2Þdy0; (20c)

the primes within the integral denote dummy variables. The eigenvalues are

gp ¼
pp
h
; p ¼ 0; 1; 2; . . .

bm ¼

2m� 1

2

p
L
; m ¼ 1; 2; . . . for a cantilever

mp
L
; m ¼ 1; 2; . . . for a doubly clamped beam

8><
>: (20d)

This completes the determination of the temperature field within the beam.
3.2. Solution of the coupled equation of motion

The first moment of temperature distribution, IT, can be calculated from Eq. (13b) using the values of y
from Eq. (20). Substituting IT into Eq. (14), the equation of motion with 2-D heat conduction is obtained as

EI
q4Y
qx4
þ rA

q2Y

qt2
�

4EaT0

C

b

Lh

X1
m¼1

X1
p¼1

ðRmpjon
þ iImpjon

Þ expðiontÞ ¼ 0, (21a)

with

Rmpjon
¼

b2mo
2
n

o2
n þ

k2

C2
ðb2m þ g2pÞ

2

wmZ
2
p sinðbmxÞ,
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Impjon
¼

b2mon
k

C
ðb2m þ g2pÞ

o2
n þ

k2

C2
ðb2m þ g2pÞ

2

wmZ
2
p sinðbmxÞ; (21b)

here Rmp and Imp represent the thermoelastic coupling terms for the beam undergoing flexural vibrations in the
nth mode. The real and imaginary parts are measures of the frequency shift and energy dissipation,
respectively [5]. The notation ðjon

Þ makes explicit that both terms are evaluated at the thermoelastically shifted
natural frequency on for the specific mode under consideration.

Eq. (21a) is implicit in on because the coupling terms Rmp and Imp are themselves functions of the natural
frequency. Therefore, an iterative solution procedure based on the weighted residual Galerkin technique [26] is
used to calculate on from a spatially-discretized form of the equation of motion. The first step is the selection
of an approximate solution

Y ðx; tÞ � Y N ðx; tÞ ¼
XN

r¼1

frðxÞqrðtÞ. (22)

The comparison functions fr(x) satisfying the beam boundary conditions are taken to be the eigenfunctions of
the beam,

frðxÞ ¼ coshðkrxÞ � cosðkrxÞ � WrðsinhðkrxÞ � sinðkrxÞÞ. (23)

The constants kr and Wr depend upon the structural boundary conditions of the beam [21]. The temporal
function for harmonic flexural vibrations with modal resonance frequencies or (the shifted frequency due to
thermoelastic coupling) is

qrðtÞ ¼ expðiortÞ; r ¼ 1; 2; . . . ;N. (24)

The residual (i.e., the error induced by the approximate solution) in the equation of motion is

< ¼ EI
q4Y N

qx4
þ rA

q2Y N

qt2
�

4EaT0

C

b

Lh

X1
m¼1

X1
p¼1

ðRmpjon
þ iImpjon

Þ expðiontÞ. (25)

Next, the approximate solution of Eq. (22) is constrained to satisfy the equation of motion in an average
sense such that the weighted average of the residual, with a suitable weighting function, goes to zero over the
domain 0pxpL. For the Galerkin method, the weighting function has the same form as the spatial
approximation of the solution, fjðxÞ; j ¼ 1; 2; . . . ;N. The Galerkin criterion isZ L

0

<fj dx ¼ 0; j ¼ 1; 2; . . . ;N. (26)

Evaluating this integral using the definition of qr from Eq. (24), and invoking the orthogonality of the beam
eigenfunctions f(x), the N spatially discretized equations of motion are obtained as

XN

r¼1

ðEIk4r Ldrj � rALdrjo2
r Þ expðiortÞ �

4EaT0

C

b

Lh

X1
m¼1

X1
p¼1

Z L

0

ðRmpjon
þ iImpjon

Þfj dx expðiontÞ

¼ 0; j ¼ 1; . . . ;N (27)

where drj is the Kronecker delta.
The thermoelastic coupling term is independent of the transverse amplitude of vibrations, Y, and this system

of equations yields a single equation for on, namely

o2
n ¼

EI

rA
k4n �

4EaT0

Cr
1

L2h2

X1
m¼1

X1
p¼1

Z L

0

ðRmpjon
þ iImpjon

Þfn dx. (28)
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Using the definition of onjisothermal from Eq. (6) in Eq. (28) yields

o2
n ¼ onj

2
isothermal �

4EaT0

Cr
1

L2h2

X1
m¼1

X1
p¼1

Z L

0

ðRmpjon
þ iImpjon

Þfn dx. (29)

Eq. (29) is a nonlinear algebraic equation in on, and can be solved using an iterative technique.
As a first approximation, Rmpjon

and Impjon
are calculated from Eq. (21b) by setting on ¼ onjisothermal. Next,

Eq. (29) is solved for on, following which Rmpjon
and Impjon

are re-calculated using the new value of on. While
evaluating Eq. (29), we found that the infinite summation associated with Rmpjon

and Impjon
converges within

200 terms (m ¼ p ¼ 200) for all the cases studied in this paper. Subsequently a refined value of the natural
frequency is obtained by solving Eq. (29). This process is continued until the value of on used to calculate
Rmpjon

and Impjon
in Eq. (21b) is within a specified numerical tolerance of the value that emerges from the

solution of Eq. (29). For the kth iteration (with k ¼ 0 corresponding to the initial approximation where
on ¼ onjisothermal), the fractional error, e

(k), in the iterative calculation of the complex valued frequency, on
(k),

at that step of iteration is defined as

�ðkÞ ¼
Reðo kð Þ

n Þ �Reðoðk�1Þn Þ

Reðoðk�1Þn Þ
. (30)

If k* is the iteration step at which the error �ðk
�
Þdrops below the selected stopping tolerance, then the iterative

process is terminated, and the dimensionless fractional frequency shift due to thermoelastic coupling is
calculated as

Do ¼
Reðoðk

�
Þ

n Þ � onjisothermal

onjisothermal

. (31)

This completes the algorithm for computing the frequency dependence of the frequency shift. Results from the
implementation of this numerical procedure are presented next to compute the frequency dependence of Do.

4. Numerical results for frequency shifts

The theoretical framework presented in the previous section is used here to compute the frequency dependence
of Do over a full range of parameters. The results are organized as follows. First, we consider the case of single-
crystal silicon and compute the effects of beam aspect ratio and structural boundary conditions on the frequency
shift. The properties of the iterative solution are discussed and detailed comparisons are made with the 2-D FE
results of Lepage and Golinval [20] to validate the theory. Next, the accuracy of the exact 1-D theory is assessed
by comparison with the exact 2-D results for the frequency dependence of Do for different structural boundary
conditions (cantilevered and doubly-clamped beams), beam aspect ratios, and material properties (single-crystal
silicon and aluminum). The following values were used for the material properties of single-crystal silicon:
E ¼ 160GPa, a ¼ 2.6� 10�6K�1, C ¼ 1.6� 106 Jm�3K�1, k ¼ 150Wm�1K�1, r ¼ 2300kgm�3, and cZ ¼

2� 10�4 at 300K [12]. The corresponding values for aluminum are: E ¼ 70GPa, a ¼ 24� 10�6K�1, C ¼ 2.4�
106 Jm�3K�1, k ¼ 220Wm�1K�1, r ¼ 2700kgm�3, and cZ ¼ 5� 10�3 at 300K [12].

4.1. Convergence and comparison with 2-D FEM

Fig. 1 shows the results of iterative calculation of Eq. (29) for silicon cantilevers vibrating in the first flexural
mode. The thickness of the beams ranges from 100 nm to 100 mm, and the length-to-thickness aspect ratio is
fixed at L/h ¼ 10 for all beams. The fractional error e defined in Eq. (30) attains values less than 10�13 within
two iterations. Subsequently, the fractional frequency shift due to thermoelastic coupling can be calculated
using Eq. (31).

Fig. 2 compares the computed values of frequency shift for the fundamental-mode vibrations of doubly-
clamped single-crystal silicon beams with thickness ranging from 3 to 9 mm, and a fixed length of L ¼ 90 mm.
Also shown for comparison are the corresponding results extracted from a 2-D FE study by Lepage and
Golinval [20]. The numerical procedure was implemented using quadrilateral plane stress elements with a 2-D
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Fig. 1. Variation of fractional error e(k) associated with the iterative solution of Eq. (29) for the frequency shift. These results are for the

representative case of a single-crystal silicon cantilever of aspect ratio L/h ¼ 10 vibrating in the first flexural mode: ———, initial

approximation (k ¼ 0); - - - - - - -, first iteration (k ¼ 1); and - � - � - � - � -, second iteration (k ¼ 2).

Fig. 2. Comparison of frequency shifts computed using our exact 2-D theory with the results of the 2-D finite-element analysis presented

by Lepage and Golinval [20]. All results are for doubly-clamped single-crystal silicon beams of length L ¼ 90 mm vibrating in the first

flexural mode: �, results from the exact 2-D theory; and ’, results of the 2-D finite element analysis.

S. Prabhakar et al. / Journal of Sound and Vibration 323 (2009) 385–396392
temperature field along the span and across the thickness of a silicon flexural resonator in that study. In all
cases, the results from the exact 2-D theory and the 2-D FE analysis differ by less than 13%.

4.2. Effects of aspect ratio and boundary conditions

The graphs in Figs. 3 and 4 show the fractional frequency shift as a function of the normalized frequency xn

for single-crystal silicon resonators computed using the exact 2-D theory. For comparison, the results of the
exact 1-D theory of Lifshitz and Roukes [5] are also shown. Fig. 3 shows the effect of beam aspect ratio on the
frequency shift for doubly-clamped beams vibrating in the first flexural mode. The frequency shift varies
monotonically between zero (in the low frequency limit) and attains a maximum value of 10�4 with increasing xn.
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Fig. 3. Effect of beam aspect ratio on frequency shift in doubly-clamped single-crystal silicon beams vibrating in the first mode. These

results are calculated using the exact 2-D theory: - � - � - � - � -, L/h ¼ 10; - - - - - - -, L/h ¼ 20; and ——, L/hX40, converging to the exact 1-D

theory of Lifshitz and Roukes [5] in the limit L/h-N.

S. Prabhakar et al. / Journal of Sound and Vibration 323 (2009) 385–396 393
This maximum value corresponds to the asymptotic limit of 0.5cZ predicted by Lifshitz and Roukes [5]. The
differences between the 2-D and 1-D theories are maximum for short stubby beams with low aspect ratio of (L/
h) ¼ 10. However, as the aspect ratio increases, the differences between the two theories diminish, and the exact 1-
D theory is accurate to within 10% for long slender beams with (L/h)X40.

Fig. 4(a) shows the frequency dependence of the fractional frequency shift in single-crystal silicon beams
with aspect ratio of (L/h) ¼ 10 computed using the exact 2-D theory. Results are shown for cantilevered
and doubly-clamped beams vibrating in the first flexural mode. The solid line in the graph corresponds to
the predictions of the exact 1-D theory [5]. Fig. 4(b) shows the relative error, ðD1D

o =D2D
o Þ � 1, between the exact

1-D and 2-D theories. The 1-D theory incurs a maximum error of 50% in doubly-clamped beams, which is
twice the corresponding value for cantilevered beams, for frequencies of xno1. However, the relative error is
negligible at high frequencies (xn410).

Fig. 5(a) shows the frequency dependence of the fractional frequency shift for doubly-clamped aluminum
beams vibrating in the first flexural mode, with different (L/h) aspect ratios. The relative error between the
exact 1-D and 2-D theories is shown in Fig. 5(b). The results correspond closely with those for single-crystal
silicon: (i) the frequency shift ranges from zero to 0.5cZ; (ii) the exact 1-D theory is accurate for long slender
beams with aspect ratios of (L/h)X40; (iii) the maximum error in the exact 1-D theory is 50% and occurs for
doubly-clamped beams of low aspect ratio of (L/h) ¼ 10.

The exact 2-D theory was also used to compute the thermoelastic frequency shift for beams resonating in
higher flexural modes. For cantilevers and doubly-clamped beams vibrating in the second flexural mode, the
frequency shift is within 1% of that corresponding to the fundamental mode.

5. Discussion and conclusions

This paper presented an exact 2-D theory to compute the effects of thermoelastic coupling on frequency
shifts by accounting for heat conduction along the span, and across the thickness, of vibrating Euler–Bernoulli
beams. The theoretical framework closely follows the formulation developed by Prabhakar and Vengallatore
[7] to compute thermoelastic damping in micro- and nanomechanical resonators. This framework is based on
classical continuum thermomechanics and assumes that heat transfer is diffusive (and not ballistic), which
requires the structural dimensions to exceed the mean free path of the quanta of heat transport [5].

The 2-D formulation leads to a coupled equation of motion, which was solved using the Galerkin method to
compute the effects of thermoelastic coupling on the frequency shift. The results of the exact 2-D theory were
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Fig. 4. Effect of structural boundary conditions on frequency shift in single-crystal silicon beams with L/h ¼ 10 vibrating in the first

flexural mode: (a) frequency shift computed using the exact 2-D theory for cantilevered (- - - - - - -) and doubly-clamped (- � - � - � - � -) beams.

For comparison, the frequency shift predicted by the exact 1-D theory of Lifshitz and Roukes [5] is indicated by the solid line. (b) The error

in the exact 1-D theory relative to the exact 2-D theory for cantilevered beams (- - - - - - -) and doubly-clamped beams (- � - � - � - � -) with

L/h ¼ 10 vibrating in the first flexural mode.
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shown to be in good agreement with the 2-D FE analysis of Lepage and Golinval [20], which serves to validate
the computational procedure used here.

A second, and complementary, aspect of validation emerges from a comparison of the limiting values of the
exact 2-D theory with those predicted by the exact 1-D theory of Lifshitz and Roukes [5]. The 1-D theory
considers heat conduction only across the beam thickness and does not impose thermal boundary conditions
at the ends of the beam span. The errors due to both factors are expected to diminish in importance as the
slenderness of the beam increases [7], such that the 1-D and 2-D theories are expected to converge in the limit
of large aspect ratio. In addition, for a given aspect ratio, the differences between the two theories for doubly-
clamped beams with two isothermal axial boundaries are expected to be greater than those for cantilevers. The
results shown in Figs. 3 and 4 are consistent with these expectations.

The exact 1-D theory is convenient since it leads to a simple closed-form expression for the fractional
frequency shift. This expression is accurate for long slender beams but can lead to significant errors for
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Fig. 5. Frequency shifts in doubly-clamped aluminum beams computed using the exact 2-D theory: (a) vibrations in the first flexural

mode, - � - � - � - � -, L/h ¼ 10; - - - - - - -, L/h ¼ 20; and ——, L/hX40, converging to the exact 1-D theory of Lifshitz and Roukes [5] in the

limit L/h-N. (b) The error in the exact 1-D theory relative to the exact 2-D theory for doubly-clamped aluminum beams with L/h ¼ 10

vibrating in the first flexural mode.
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beams with low aspect ratio. The maximum error of 50% occurs for doubly-clamped beams with (L/h) ¼ 10.
In such cases, the use of the exact 2-D theory is necessary for an accurate computation of the frequency
shift. Our results, as well as those of Lifshitz and Roukes [5] and Lepage and Golinval [20], are consistent
with a maximal value of 0.5cZ for Do. This result implies that the approximate 2-D models of Guo
and Rogerson [18] and Sun et al. [19] can overestimate the fractional frequency shift by an order of
magnitude.

An examination of the sign of Do is instructive because of its implications for the stability of vibrations. In
all cases, Figs. 3–5 show that thermoelastic coupling leads to an increase of the natural frequency. Thus,
thermoelastic coupling effectively leads to an increase in the stiffness of the structure. This stabilizing effect is
in contrast to other types of coupling (such as fluid-elastic coupling [26]) which lead to a softening of the beam
and hence to static or dynamic instabilities.
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